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SUMMARY

The flow of the viscous layer of ablating material on the surface
of a body of revolution entering the atmosphere was Investigated prima-
rily in regard to phenomena over the entire body, in order to find the
primary effect of the decelerating force on the flow and heat transfer.
The phenomena were shown to be essentially unsteady exclusive of the
region near the forward stagnation point. The significant dynamical
parameters were determined and some solutions were obtained for vearious
deceleration rates and times. These solutions show that deceleration
causes an accumulation of ablating material in a reglon downstream of
the stagnation point, and for this reason the thin-boundary-layer ap-
proximation will eventually fail to be appropriate.

INTRODUCTION

The ablation of skin material has been extensively studied as a
means of reducing the heat transfer to reentry-type vehlcles. For the
most part analytical studies have been restricted to consideration of
the stagnation region of bodies. On the basis of such an analysis
(ref. 1), it was shown that for materials which melt before they vapor-
ize, the presence of the liquid layer cannot be ignored in evaluating
the characteristics of this type of thermal shield.

Although the liquid lasyer can be subject to a strong body force be-
cause of accelerations and decelerations of the vehlcle, its effects on
the flow and heat transfer have not been investigated in general. In
determining conditions away from the stagnation reglon, it is particularly
important to include the body force effects, because for vehlcle decel-
erations the body-force opposes the downstream flow of liquid; in fact,
it was recently pointed out in reference 2 that under certain conditions
the 1ligquid will be forced upstream and can eventually accumumlate at some
position away from the nose of the body. A qualitative discussion of



deceleration effects is given in reference 3 and a similarity solution
of the speclal case of a liquid layer subject to deceleration on a sur-
face 1n a quasi-steady incompressible constant-pressure-gradient stream
is presented in reference 4. Integral methods have been used to study
the problem about more general bodies in references 5 and 6. In refer-
ence 2 it was pointed out that some important aspects of the problem
were omitted 1n the analyses of references 4 and 5. In particular, the
accumuleation of liquid was precluded by the similarity assumption in
reference 4 and by the assumed velocity profile in reference 5. Although
the basglc equatlons in reference 6 contain a deceleration term, no dis-
cussion of 1ts significance 1s given therein; it will be shown subse-
guently that in a steady-state analysis of the problem, such as refer-
ence 6, no solutions containing significant deceleration effects can be
obtained.

The purpose of this report 1s to extend the two-dimensional con-
siderations of reference 2 to axisymmetric bodies and to present the
principal novel features of the flow and heat transfer that result from
a general treatment of the deceleration effects.

ANALYSIS
Conditions of Problem

The specific problem to be analyzed is the flow and heat transfer
of a glassy viscous film of ablating material on the exterior surface
of a body of revolution or symmetric two-dimensional body that enters
the atmosphere at high speed and that experilences a large deceleration
and surface heating. The viscosity of the liquld lsyer increases from
some value at the gas-liquld interface to very large values near the
body because of the temperature change. Density, specifiec heat, and
thermal conductivity are assumed constant. TFor sultable materials and
expected physical conditions the thickness of the reglon where the vis-
cosity 1s low enough for the ablating material to be considered as fluid
is very small compared with the body scale.

Some additional assumptions are made in the case to be analyzed in
detaill in order to show the physical phenomena most clearly and simply.
In particular, the body is assumed to be subjected to a constant decel-
eration, although In an actual case the trajectory will determine the
deceleration rate. Furthermore, the temperature at the gas-liquid inter-
face is assumed constant, and the vaporization rate will be neglected;
it will later be indicated how these restrictions might be relaxed for a
more realistic calculation.

Because the liquid-layer thickness is small compared with the radilus
of curvature of the body, a system of coordinates parallel to and normal
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to the gas-liquid interface can be considered as a Carteslan coordinate
system (see fig. 1). The interface is taken to be the surface y = O,
and y increases into the liquid. The acceleration terms resulting
from the unsteady motion of the interface relative to the body are neg-
lected, but the velocity is considered steady at any instant.

The resulting equations of motlon for the liquid layer are:

Continuity:

%ReU +%R€V=O (1)

where € = 0 for two-dimensional bodles and € = 1 for axisymmetric
bodies.

Momentum:

ERE S R AR S R IR

(2)
v ov oV 4R oP d [— oV o |- v
p(§f+U§f+V§f'EﬁA)='Ef+z§f(u5f)+3fﬁl(g%+3i)](3)
Energy, with thermal expansion of the ligquid neglected:
T, T, I FT | T
pcp(-a—%"‘l'U&'i‘V&'):k(-ax—z"fé-Y—-z')"‘Q (4:)
Dissipation:

S {CRECIREE £ SR

(A1l synmbols are defined in appendix A.) The transformation from sta-
tionary coordinates to accelerating coordinates fixed in the dey is
equivalent to the introduction of an equivalent body force pA per unit
volume with the components of equations (2) and (3).



Scaling and Reduction of Equation

In order to compare the various terms and to determine their rela-
tive magnitudes, all variables will be transformed to dimensionless
variables in such a way that they are of order 1; the magnitudes of the
terms will then be indicated by the fixed coefficients.

For X and R +the clear choilce of scale is the body scale size
L, so that

X = xL; R =1L

Scaling the pressure, temperature, and viscoslty by the values at the
stagnation point (X = 0) interface (Y = 0) gives

T = ToT; P = Pyp; Bo= g

The sceles for Y, ?, U, and V will be unspecified for the present but
indicated by I8, o, W, and F, respectively, so that

Y = Idy; t = ot; U = Wu; V= Fv

The scale I8 1s related to the liquid-layer thickness. From the con-
tinuity equation,

F=38W

The first momentum equation (2) is employed to estimate the megnitude of
W: Because the viscous fluid attains only small velocities, it is an-
ticipated that the inertia terms can be neglected and that the shear and
pressure forces are of the same order of magnitude. Thus

or

PoL P D)
0

W= {=Js% F = (=—|83
Ho Ko

Because the inertia terms are small, the time scale L/W obtained from
the first term of the inertia equations is inadequate. The only remain-
ing term for selection of the time scale is that of the energy equation.
This is the most important unsteady effect, since the heating of the
liquid will determine the rate of softening and hence the rate of velocity
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increase. Because of the slow motion, the rate of temperature increase
should be balanced by the conduction term. Therefore

.- (Eg)az

The remaining scale factor & will be subsequently identified. In
terms of the new variable the equations are

%reu.;.%rev:o (5)
o net (v 2] o @) Bt 2B
EEees] @
S et ( e ) oo - Frat 36 )
et Sl o
o neees?(s 2 2o ) S 2]
25510 R @

The small terms are deleted from these equations on the assumptions
2

that & << 1, Red® << 1, Pr >> 1, and Pr << 1. The analysis herein

CPTO
will be applied to sudden heating of the interface, where OT/dt 1is
initially indefinitely large at y = O. Because of the small extent of
the region of softened material, however, du/dt and Ov/dt are not
indefinitely large. The assumptions thus yleld



g& = Bg %% ~ 0 (10)
1 o . or _ T
-5—£+B(u5;+v§)=‘a—y'§ (ll)

as well as the unaltered continuity equation (5).

The fact that the main unsteady effect in the ablation process is
due to the unsteady term in the energy equation was also mentioned after
a qualitative discussion in the stagnation-polnt analysis of reference 7.
Because of equation (10), p is assumed constant through the liquid layer
at any fixed station X on the body and is equal to 1ts value at the
interface (p = p(X) = py(X) = p(X,0)). The Newtonian pressure distribu-

tion is used for p(X). The importance of deceleration 1s seen to depend
on the magnitude of the parameter g (i.e., = ApL/PO), which represents

the ratic of the deceleration body force to the pressure force. From
Newtonian fluid mechanics the decelerating force on the body is of order
PyS, where S 1is the projected cross-sectional area of the body. If

LS is the body volume and pplS the mass (pp 1s average mass density),
then the deceleration is

A= ;%; or g = é; (12)

Thus for a reentering rocket, g <can be very large, whereas for a
meteorite, g 1is of order 1. The second parameter § +that appears in
equation (11) indicates the importance of heat convection relative to
heat conduction and depends on shear stress as well as on properties
of the liquid layer.

The initlal conditions of the body for the sudden application of
boundary-leyer heatlng are determined by the assumption of a cold glassy
layer. The initial temperature is assumed to be 0, so that

t = 0; T=u=v=20 (13)

At the interior of the body (y - =), the temperature remains low, but
the melting away of the liquid layer results in a relative velocity v,

between the interface and the body. Therefore

Voo (14)

It

y > ; T=u= 0; v
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If v, <0, the glassy liquid is being carried away; if v, > 0, the
liquid is accumulating. Because of symmetry at the stagnation point,

Of du _ ov
x = 0; il =0 (15)
At the interface, the temperature and shear stress of the liquid are
equal to those in the gas:

= 0; T, =T,; ?-?—"BU) o U
vy =0; g = Ti’ g~ "1 = M\F), T Ty, LT T

(16)

And finally the heat-balance condition is

aT —
kg(&ﬁ>i = k@%)i + oV,H | (17)

as a restatement of equation (18) of reference 8. The convection of en-
thalpy by diffuslon has been neglected, since a noncatalytic wall is
assumed. Also, the radiation terms in the energy equation that are in-
cluded 1n reference 6 have been neglected.

If p 1s a known function of x and Yy, equation (9) can be inte-
grated for u to yleld

n g%= -1y + fy (18)

¥ y
u=f/ %dy-'ri/ %if (19)

oo

If some dependence of p on y 1s assumed, equation (19) will yield a
solution for u, which when inserted into the continulty equation (5)
results in a first-order differential equation in x of the boundary
conditions with explicit dependence of y. The variation with x thus
originates in conditions in the gaseous boundary layer. The integral

of equation (5) is
y
v-vm=--;'—€%(r€f u‘) (20)

]
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However, the viscosity depends on the temperature, which 1s found as a
solution of a partial differential equation with x, y, and t as in-
dependent varisbles. Because of the complicated form for the convection
terms, the general solution of the energy equation is difficult. In ref-
erence 6 an integral approach has been used that relates the boundary
values and gives no profiles} in the present case, however, because of
the requirement that some detaills of the structure of the liguid layer
be found, it was considered desirable to simplify the differential equa-
tion and to solve this approximate form in detail. In references 1

and 9, in which the problem is analyzed at the stagnation point, where
dT/d3x = u = 0, and for steady-state conditions, the equation is sim-
plified by setting v = v,. 1In the present case, the same substitution

is made with justification as follows: In the first approximation, the
interface temperature T;(X,t) is assumed to vary only slowly with X.

Only in the thin reglon where T ~ T; are there apprecisble flows, so

that the effect of convection in this region of nearly uniform tempera-
ture is small. The only important effect of convection is the transport
of the high-temperature interface toward the body as the viscous liquid
layer is swept away or evaporated. The energy equation with these assump-
tions reduces to

T o S
Yy + Bv,, E = 'a—y—z- (22)

A discussion of the errors arising from this approximation is given in
appendix B.

The inadequacy of the steady-state approach for applicatlion over
the whole body (suggested in ref. 9 and used in ref. 6) can be seen by
integration of equation (22). For the steady state, there is obtained
from equation (22)

aT (dT) PV
i

ay © \ay

This equation shows that dT/dy is unbounded as y - » 1in regions of
X where v, > 0. Such regions can exist on decelerating bodies, as
previously described in reference 2. At the stagnation region, v, <O,

'so that no difficulty arises either at X = 0 or A= 0. Although the
energy equation (22) from which this result is derived is of questionable
accuracy near the interface, it closely describes conditions for large
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values of y. The physical interpretation of thls result is as follows:
If a long body under steady deceleration 1s imagined, it is clear that

in the cylindrical part no pressure gradient exists and that because of
the thick boundary layer the surface shear forces are small. Consequently,
the dominating force is a deceleration force acting as a gravitational
field on a layer of liquid clinging to the wall. This liquid will there-
fore slump forward. Because of the equivalence of conditions at all lo-
cations, the motion will approximate that of uniform layers of fluid
sliding over each other. The continued application of heat will cause a
growth in thickness of the thermal layer on this section of the body, so
that steady-state conditions are never attained. Also, the forward slump-
ing flow from the back region and the backward-swept flow from the front
region will meet at some intermediate station where the fluid will con-
tinue to accumulate. (This result will be modified when the accumulation
of material is sufficient to alter ‘the pressure distribution.) This re-
gion will also not approach a steady-state condition. Near the forward
stagnation point, a steady-state sclution is nearly attained.

No details except results of the computations made in reference 6
are contained therein, but because of the reasons cited previously those
numerical results could not have included deceleration effects. The fact
that no discussion of these effects is glven therein seems to substantiate
this supposition.

Method of Solution

The boundary conditions for calculation of the ligquid layer are not
all known a priori. At the interface there must be a match of tempera-
ture, shear stress, heat flow, and mass evaporation rate. If a tempera-
ture distribution ,Ti(x,t) is assumed, all other guantities may be calcu-

lated from solutions of gaseous boundary layer. Various methods of making
this match can be used; in addition to the description of some of these
methods contained in the previously mentioned references, a comprehensive
discussion of this problem is presented in reference 8. In the present
analysis the gas boundary-layer characteristics of reference 10 were used
for the assumed Newtonlan pressure distribution, and hence the calcula-
tions (but not the analysis) are restricted to the class of bodles for
which those similarity solutions apply. A representative two-dimensional
body of this class is shown in reference 2; for axisymmetric bodies the
Mangler transformation is epplied to permit use of the results of refer-
ence 10. Since this procedure of using exact similar gas solutions 1s
rather lengthy and involved and is not so good as direct use of the tables
of reference 10, which can be used for any body shape, the details will
be omitted; the axisymmetric body of this class studied herein 1s shown

in figure Z.
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When the liquid-layer flow and heat-transfer equations are solved,
a discrepancy may be expected to exist in the heat balance for each as-
sumed interface temperature distribution. From several assumptions of
the interface temperature distribution Ti(X,t) it should be possible to

find & distribution by interpolation for which the heat balance conditions
are satisfied. This procedure could be applied at each instant of time by
starting with the value at X = O and working downstream by integration
of the continuity equation. For the problem considered herein, of sudden
application of the hot gas, a selection of T(X,0,t) = 4000° F (and

T; = 1.0) was chosen in order to permit a solutlon that would indicate

the main kinematic features of the liquid glass layer as a whole and to
show time and x-variation of the heat-flux parameter (OT/dy);. It was

also assumed that there is no evaporation, that is,

vy = v(x,0,t) = 0O

The energy equation 1ls integrated directly to give
T = Ei PV erpe L(L + -/t | + erfe = - Bv_~/t (23)
= 3 5 w/f BV, er > :%f Bv,

for the assumption that both T; and v, are independent of time; these
assumptions are more realistic for +t large than for initial conditions.

- Completing the solution requires an explicit form for the dependence
of" 4 on y. For this purpose, assume

u=yy explay + by?)

The functions &a and b are determined from the assumed dependence of
viscosity on the temperature:
7 \"P
p, = “‘. —
1(’-’-‘1)

Differentiating yields

L1214
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From equation (23) the required gradient T' is found for identifying
a:

1(0) _ .y 1 BVt 2 -B&vit/4
T:(s&_‘)i =T = E[:va erfc<—2—> - ﬁ e / (24)

The quadratic term is determined by the temperature at large values
of y, where equation (23) 1is approximated by

(B BTt
T2 TP\n 2 Z
Ti = y p2v23/2

Jt y

The dominating factor in determining the rate of decrease of the temper-
ature at large y 1is

2

exp 7%

Hence b = n/4t i1s chosen, from which

2
W=y exp [—n(T'y - {-g)] (25)

With this viscosity relation, equation (19) may be explicitly integrated

to
v
- . 2 - 2
o -F) el - ) Y e

(26)

where the abbreviations are

o= 2Z2(l - +/x ZeZ2 erfc Z)

2-/t

el
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Also, by integration of the continulty equation,

e WE/4t y [ pCeryT

2]
v -v, = - =y +
b 2.,.€ ox 2 Ha [
nér i v L L
(r‘ - %%) n{Th - %3

7,6
+ 2tT'(e - 1)| + — (27)
Mi

At the interface v = vy, 2= - o/nt T' =Z5, 6 = 64, and

€
1 o (¥ 1 6y -1
- = - + ! -+
Vi Voo nzre &-( ""’iTiz { flinT‘ aet ei Ti (28)

At the stagnation point r =x, f = x(df/dx)o, Ty = x(dTi/dx)o, by = 1,
T' = T4, and 6; = constant, so that

6 ATy 6
X i /4f i 0
1+ ¢€ ar 1 bp - 1 aty
V(O) -V (O) = — O [_ (——) (_ 4+ 2+Tt ) + (
(28a)

The limiting steady-state case is obtained when t 1is large,
Zy = - «/nt T* is large, and

U 1 1.5 . 1.5

1 - =2
28 nt(f‘ - ji)z ntT 2

2t

At this point the problem is completely solved for dependence of
u, v, and T on x, y, and 1, provided that the dependence of the
boundary parameters v,, T!, Ty, vy, and Ty on the variables X and
t 1s found. For the approximate solution, vy = O, but, in general, the
temperature balance Ti = Té will determlne the vapor pressure of the
components of the liquid glass, and the diffusion rate through the

boundery layer (see refs. 9 and 11) will depend on the external condi-
tions and the wall temperature. Similarly, the shear stress and heat
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transfer will depend on T; and external conditions. The terms T'
and v, are left to be found from equations (24) and (28).

Scale of B

Since the equations are available for a solution, it is possible at
this point to find an approximate, particular solution from which a rea-
songble selection can be made for the arbitrary thickness parameter 5,
the ratio of y scale to x scale. This estimate is made in appendix C.

Numerical Procedure

In order to obtain the parameters v, and T', which are required
before u, v, and T can be calculated, equations (24) and (28) must be
solved simultaneously. The discussion is facilitated by writing the dif-
ferential equation (28) in the form

_1 9 e
Vp =V = < 3% r€(Bf + cwi) (29)

where B and C are functions of T' and t. On differentiation,

Aart. ET.
ar f dr i i dr OB dc \oT! |9V
Vo = Vi = B(—— + € -; —-—) + C(-.._.. + __r_ _._> + [(‘f W + Ti BT—JB-\C:I—

(30)
In the particular problem solved (the first approximation where ﬁi = Tb,
dTo/dt = 0) the coefficient of dv,/dx was a small quantity; at x =0,

the conditions f = T4 = 0 cause the coefficient to vanish there. The

usual integration procedure was therefore unsultsble in that successive
approximations to the solution at a point frequently failed to converge.
Equation (30) was therefore solved for the term Vi by writing the eque-

tion with numerical evaluation of the derivative from the argument itself:

dv, E
i - _% _ { el ] - - -
vi=D+E = = D + 5 (Sl vi-2 + gt lv& 1+ Sivéa (31)

This method of solution was inadequate in an intermediate region
for certain cases of large values of time and deceleration; the possible
cause of this failure will be discussed in the RESULTS. In those cases
it was possible to begin the solution at x - » and leave an intermediate
region with the solution undetermined. For large values of x, it was
assumed that v, = dv,/dx = O.
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RESULTS

In the example calculated, the ablating material was taken to be
Pyrex and the conditlons assumed were as follows:

Flight Mach number . . . . . . . . . « ¢ + « « ¢ v ¢« « &« v + + « . 18,0
Altitude, Tt « = v « v + & v v 4 e e e e e e e e e e e e . . . . 90,000
Characteristic length L=Rg £t . . . . o v v o000 ... 1
Density, p, 1b/cu ft . . e B3
Conductivity, k, Btu/(ft) (OF)(sec C e e v« . . 1l.71x10°3
Specific heat (pressure constant), Cps Btu/(lb (OF) s e e e . . . 0,29
Coefficient of viscosity at stagnatlon point, Hy (at 4000° F),
slug/(ft)(sec) . . . . . N ¢ N 0 Y
Acceleration rate, A, gravity units (g's) e e s e s s . . . =70, =23.2

Body shape is shown in figure 2. From these conditions,

Prandtl number, Pr . . . . « « ¢« v v v 4 4 e 4 e s e s e e e . . . 383
Reynolds number, Re . . . . & & v 4 v 4 v 4 & & v 4o o + o « « + . 79.6
Scaling factor, B v v v v v v 4 b e e e e e e e e e e . . 2.510x1079
Heat-convection parameter, 8. . . . . + . « + « . « . « « . . . 0.1929
Scaling factor, W, ft/sec . . . . . v v v v v 4 v v v v v v . . 1.370
Scaling factor, F, £t/S€C . v v v v v v v v 4 v 4 e v v . . B.446X1073
Dimensionless acceleration parameter, g . . . . . . . . . . =-0.6, -0.2

For Pyrex under the conditions of the problem, a value of n of 8 was
assumed. The gaseous boundary layer adjoining the liquid layer was as-
sumed to be laminar throughout its entire extent.

Development of the normal interface velocity v, and the interface
normal temperature gradlent T' for the condition of no deceleration is
shown in figure 3. The ablation velocity v, 1ndicates a steady in-
crease in ablation rate at the stagnation point to a final value of
v, ~ -1.25 (corresponding to removal of material at the rate of 0.052
in./sec). Farther downstream, the material accumulates in a slight
bump, which is swept downstream as a kind of single wave. This phenom-
enon may be understood to result from the decrease in shear stress with
downstream distance; the backflow induced by the pressure increases with
time because of the thickenlng of the softened layer on which the pres-
sure acts., With increasing time, the temperature gradient decreases from
a relatively high uniform value, as might be expected from the initial
sudden application of T =1 and relatively small convection, to a lower
steady-state value near the stagnation region and zero value far back on
the body. The temperature gradients for very short times cannot be ac-
curate, because the boundary layer, as a result of thickening, will pro-
vide gradients that decrease as X increases, whereas the figure shows
constant values., Conditions in the stagnation region are approximately
steady state at t = 29 (corresponding to T = 4.1 sec). At all times
the most severe thermal load is Imposed at the forward stagnation point.
This occurrence is easily understood because (1) the thickness of the

LT2T-4
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gaseous boundary layer is a mininum near the stagnation point, and

(2) there is a large negative normal velocity, which results from the
flowing away of material and which reduces the thickness of the thermal
layer.

Details of the structure of the viscous layer are shown in figure 4.
A1l temperature profiles are about the same for short time, but with in-
creasing time the stagnation-point profile approaches a steady~-state
curve, whereas the others are all nearly the same as for unsteady heating
of a slab. (After X = O, the next profile is selected for such a value
of X that v, = 0; therefore, u; 1is nearly a maximum there. )

Deceleration of the body causes changes in the behavior of the liquid
layer as shown by comparison of figures 5 to 7 with previously mentioned
results. The normal interface velocity at the stagnation point is reduced
6 percent for maximum deceleration. Farther back the calculations break
down in a region where the normal interface velocity v, exhibits large

gradients. The inadequacy of the equations used herein to describe the
condition in this region probably arises from the failure of the boundary-
layer assumption because of the accumulation of fluld and the thickening of
the liquid layer. The results of the present calculations show this re-
gion of large positive normal velocity v, which results from the arrival

of the fluid from the forward section by boundary-layer drag and from the
slumping forward of material from the back end because of deceleration;
at this location the forces balance. The accumulation of liquid into a
bump may be directly inferred from the normal interface velocity Ve

curves of figures 5(a) and 6(a). Definite values of v, and the growth

of the bump size cannot be given because of the failure of the backward
and forward solutions to coalesce, but order of magnitude interpretation
of the curves indicates the growth rate to be comparable with ablation
rate at the stagnation region. Calculations could be made downstream of
the critical region because of the small influence of the derivative and
the resulting local character of the solution.

The failure of the solutions obtained by forward and rearward inte-
gration to match in the region of liquid accumulation is not surprising.
In general, two asymptotic solutions (here for small and large distances
from the stagnatlion point) cannot be joined without careful analysis.
Scmetimes the matching is further complicated because of the occurrence
of a singularity in the intermediate region due to the omission of terms
in the asymptotic equations that are significant there. Matching the
asymptotic solutions properly in such a region requires that the analytic
form of the solution there must be found. For the present problem there
appears to be a distinct possibility of finding the solution of the
Navier-Stokes equations in this accumulation region, because the inertia
terms should be negligible there. Further consideration is being given
to this point.
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The interface temperature gradient approaches very small values at
the bump because of the accumulation of the hottest liquid there. The
temperature gradient at the stagnation point 1s reduced only 3.5 percent
for maximum deceleration under the conditions of the calculations.

Both the velocity and the temperature profiles for high deceleration
rates show clearly the dissimilarity of shape at varlous locations; there
is even a case of flow reversal that results from the opposing effects of
surface shear and body force. It is clear that the assumptlon of similar
profiles as in reference 4 is unsuitable.

A large accumulation of material in a bump will probably not be real-
ized in a real situation because 1t would be ripped off by the airstream
if it grows sufficlently large. The probability of this occurrence is
enhanced for smaller bodies, as may be seen by finding the effect of
the body size on the scaling factors. The normal velocity scale

F = (POL/EO)B3 is independent of the body size, and therefore the rela-

tive magnitude of the bump varies inversely as the body slize; thus on
reduction of I by a factor of 100 to a diameter of 1/4 inch, the rate
of growth of the bump of the order of 0.05 inch per second is very large.
The body scale has an additional effect on the gaseous boundary layer in

that the shear varies as L'l/z. This variation tends to push the bump
downstresm, and to increase the forward area from which material is accu-
mulating as well as the flow rate u. These effects also enhance the
rate of growth of the bump in smaller bodies as compared with larger ones.
Since meteorites are dense, the deceleration rate is low (g = 0(1)) ac-
cording to equation (12) and will tend to reduce the effect.

The heat flow from the gas to the liquid was calculated at the stag-
nation point to be 53,200 Btu per square foot per second by the method
of reference 12, and the results of reference 8 giving the ratic of hesat-
transfer rate over & hemisphere to that at the stagnation point were used
to estimate the value elsewhere. If vaporization is neglected, the tem-
perature gradient in the liquid.at the interface is then 311,000° F per
foot. On a dimensionless besis, the stagnation-point temperature gradient
approaches the 1limit

Tt = 311,000 %—L- = 0.1755

i

This value and those at several other locations are shown in figure 5.
Thus, the heat load estimated from the liquld lsyer herein is too high.
This error results from having teken too high a value for the Iinterface
temperature.

The temperature gradient of the liquid at the interface will depend
on the sblation rate v_, which, through the viscosity, will depend

LT2T~E
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strongly on the temperature. An assumption of a lower temperature will
thus greatly reduce the interface temperature gradient and heat flow;
closer agreement with other results (ref. 9) can then be expected.

For initial conditions (t small), the correction required is much
greater; the corrected temperature will therefore rise from a low initial
value to the final equilibrium value.

SUMMARY OF RESULTS

Analysis of the flow of a viscous layer of fluid on a body subjected
to sudden atmospheric heating and deceleration ylelded the following re-

sults:

1. Flow, temperature, and heat transfer 1n the liquid layer depended
on the deceleration parameter, the heat-convection parameter, and the body
shape, in addition to those quantities already found for the steady-state
condition at the stagnation point.

2. A steady-state solution was possible only in the forward part of
the body where the ablation process was removing rather than accumulating
material. On the aft part an unsteady solution was required.

3. Similarity solutions were impossible; the velocity and temper-
ature profiles varied radically in shape from one portion of the body to
another and at different instants of time.

4. The heaviest heat load and ablation rate occurred at the stagna-
tion point; deceleration affected these values slightly.

5. An accumulation of fluid occurred in the region where body, shear,
and pressure forces were approximately balanced. This accumulation
might cause a substantial change in the body shape for small bodies in
which the fluid would be blown off a shoulder rather than flow off the
back end.

Lewls Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, March 13, 1862



18

APPENDIX A

SYMBOLS

A bar over s symbol or use of a capital letter indicates a quantity

with dimensions. Absence of the bar or use of a lower case letter indi-
cates a dimensionless quantity - the dimensional quantity divided by an

appropriate scale factor. Bars in this sense are omitted from this list.

A

B,C
Cp
D,E

F

Re

acceleration rate of body, ft/secz; scaling factor, Po/pL
notation quantity; compare egs. (28) and (29)

specific heat of liquid (pressure constant), Btu/(slug)(°F)
notation quantity; compare egs. (30) and (31)

gcaling factor for V

dimensionless body force; f = %E -g l..G%%)

dimensionless acceleration parameter, ApL/PO
heat of vaporization of liquid, Btu/slug
conductivity of liquid, (Btu)(ft)/(sq ft)(sec)(°F)

characteristic length of body, ft
index in viscoslty-temperature relation (E/Eb = (T/Tb)_n)

pressure, lb/sq f't; scaling factor Pg

Prandtl number of liquid, cpﬁb/k

pressure at X = O, lb/sq £t

dimensionless pressure, P/Pq

distance from axls of body to surface, ft; scaling factor, L
Reynolds number of liquild layer, pLW/ﬁb

dimensionless value of R; r = R/L

P e OT
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projected cross-sectional area of body

welghting factor of value of function of X at X = Xy for calcu-
lating derivative of function

dimensionless temperature, T/TO

temperature, OR; scaling factor, Tb
¢
T dy/4

dimensionless time variable

time, sec; scaling factor, ¢ = (pchz/k)S2

veloclty of fluid parallel t; X, ft/sec; scaling factor, W
dimensionless U variable; u = U/W

Velocity of fluid normal to body surface, relative to interface,
ft/sec; scaling factor, Wo

dimensionless V variable; v = V/Wo
ablation velocity at interface with respect to body, dimensionless
scaling T ; W= T )88

g factor for U; W = (POL/UO)S , ft/sec

distance along body surface measured from stagnation point in plane
containing body axis, ft; scaling factor, L

X/L

distance normal to body surface measured from interface inward, ft;
scaling factor, Id

Y/15
iy

heat-convection parameter, Pr Re 62

scaling factor for distance normal to interface,

5 = Bl + e)ﬁg(d?/dX)O/Qpcp/k)znstPg]l/g, dimensionless
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€ 0 for two-dimensional problem, 1 for three-dimensional case
6 222(1 - -/; ZeZz erfe Z)

5 coefficient of viscosity

p density of liquid, slug/cu iy

o scaling factor for time, ¢ = (pchZ/k)Ez, sec

T shear stress, lb/sq ft; scaling factor, POS

) dissipation function; scaling factor, ugWZ/LZs2

Subscripts:

g gas

i interface between liquid and gas

0 stagnation point

[ i Ju oY 1
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APPENDIX B

MAGNITUDE OF ERRORS THAT ARISE IN THE
APPROXIMATE ENERGY EQUATION

An error arises from the use of the approximate form of the energy
equation (22) in place of the more accurate form (11). Physically this
approximation corresponds to consideration of heat convection resulting
from motion of the thermal layer as a whole, while the convection arising
from details of the internal motion in the liquid layer is neglected.
Because convection is unimportant in the initial period (t small) when
the glassy layer is first beginning to soften, the discussion i1s limited
to the steady-state condition with the assumption that v, <O. The

method of this report (eq. (22)) is first applied to these special condi-
tions, and then a parallel calculation is made for the more exact form,
followed by an estimate of the effect of the differences.

The approximate form

Tyy = vaTy
is integrated to
T
log Bvey
Ty)y
Then
0
(Ty)
y'i
Ti= TY Ay = Bv,,
from which the interface gradient 1s
Tt = (Ty)i —_
approx. Ti = BV

For the more exact form,

¥
T uT,
log r—xj— =B v + =— | dy
Ty i .//. ( T& )
o}



22

If it 1s assumed that T/T; is a function of y/8y, where ®&p is the

thickness of the thermal layer, and that the velocity layer thickness
5, 1is proportional to &qp, then with the further assumption that

dTi/dx = 0, equation (22) 1s integrated to

Y
T. das
= - Y
8 Ty, B/ (-2 )
0

The velocity layer thickness B8, describes the region where u is of
the order of w5 and it may be defined as

5=l = _ 1 fou
v uis—fl

This quantity is distinguished from the constant scaling factor & in
that &, 1s a varieble function of x and t, and is scaled by the

length &L. Similarly &p may be defined in terms of the initlal tem-
perature gradient

o = -1

For the estimate of the magnitude of the error the following approxima-
tions for the velocity layer (y < &) are used:

v/, v = Vw(l ) e-y/ﬁv)

u=uie

from which

A R TT N EC)

Because the temperature gradient varies only slightly in the velocity
layer,

T, T

LT2T-4
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which yields the approximation

as
T, = (Ty)i 1+ va[: - 5V(1 - e-y/ﬁv)} - Buy EEK av[ - (% + g%)e'y/aﬂ

The temperature is obtained from the gradient by expanding in power series
the exponentials in the preceding equation and retaining the quadratic
terms. Integration of the resulting expression yilelds

ad 3
= t - _V B
T=T; 41 +T [y + (;w Uy 33 ) E%;}

For the region y > 6V, if the approximation v = v,, u= 0 1is used,

Tyy = BVOQTy
By
Ty = Ke

_ kK By _ Iy
T= Bvg - T BV,

If values of T*!/T from the inner and the outer solutions are now matched
at the point y = &y,

, BVeDy dd,, 2
R (R oSN

Pl =7 = ™ B 2]
1+ T’[&v + (Vw - uy E;i)ﬁ_%z_J

Tépgr"ox. -1 - B&V[voo(l - %) + ui<l - E—) gx&] - P—%S—Vz VOO(VDo - Z__:K)

For the magnitudes involved, the term 1n Bz may be neglected. The
variation of the term in B is such that a maximum value can be expected
at the stagnation point, since uy dﬁv/dx is positive, going to zero at

x = 0, and v, 1s negative with a maximum magnitude there. Thus the

maximum error (at x = 0) is

T} - T 0.632 &,

8pProX . o o
oL -0.632 BBV, o
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where the approximation

=1 -1
Sy = 7T ~ By

oo

has been utilized.

Examination of the detailed calculations near x = O for no decel-
eration and for t large shows ﬁv/ST ~ 0.1. Thus Tépprox. is too

large by about 6 percent. At y = 8y the temperature has changed by ap-
proximately the ratio SV/ET ~ 0.1; consequently, the maximum error in T

is 0.6 percent, and is less for ¥y # By -

Equations (26a) and (28a) show that wu; has terms in 1/T* and

(l/T’)2 which lead to errors of between 6 and 12 percent. Correspond-
ingly, the ablation velocity is too small by an amount between 12 and 18
percent. All these errors are less at regions other than that near the
front stagnation point and for shorter times when the velocities have

" not attained their maximum values. The errors are also reduced for ma-
terials having a larger index n of viscosity dependence on the tempera-
ture, since the hypothesis of uniform temperature in the convective ve-
locity layer is more closely satisfied for such fluids.

L1214
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APPENDIX C

SCALE OF o

The scale of B is selected in such a way that the requirement
» = 0(1) is satisfied. For this purpose v, = -1

v

for 1t = o, on the assumption of v

1

radius of curvature at the stagnation point).

equation (24) reduces to

_ — 2
Té = =f = -PrRed

and equation (28a) to

pi2 o Lt e
o - 2 dX 0

From these two equatlons T4 1is eliminated.

Re and (d7,/dX)y 1is

With py o= 1,

Then

With these assumptions,

The involvement of 8

25

is chosen at X =0
negligible and (df/dX)y = O (large

in



26

1.

2.

3.

4.

5.

6.

REFERENCES

Sutton, George W.: The Hydrodynamics and Heat Conduction of a Melting

Surface. Jour. Aero. Sci., vol. 25, no. 1, Jan. 1958, pp. 29-32; 36.

Ostrach, Simon, Goldstein, Arthur W., and Hamman, Jesse: The Effect
of a Deceleration Force on a Melting Boundary Layer. Jour. Aero.
Sci., vol. 27, no. 8, Aug. 1960, pp. 626-627.

Cheng, S. I.: On the Mechanisms of Atmospheric Ablation. Paper pre-
sented at Int. Astronautical Cong. (Amsterdam), Aug. 1958.

Tellep, D. M.: The Effect of Vehicle Deceleration on a Melting Sur-
face. Vol. 1 - Fluid Mechaniecs. Tech, Rep. LM3D-48381, Lockheed
Aircraft Corp., Jan. 1959.

Fanuceci, J. B., and Lew, H. G.: Effect of Mass Transfer and Body
Forces on Two Phase Boundary Layers. Res. Memo. 35, General Elec-
tric Co., Apr. 1959.

Hidalgo, Henry: A Theory of Ablation of Glassy Materials for Laminar
and Turbulent Heating. Res. Rep. 62, Aveco Corp., June 1959.

7. Georglev, Steven: Unsteady Ablation. Res. Rep. 94, Avco Corp.,

8.

9.

10.

11.

1z.

Sept. 1959.

Lees, Lester: Convective Heat Transfer with Mass Addition and Chem-
ical Reactions. Combustion and Propulsion, Third AGARD Colloquium,
Pergamon Press, 1958, pp. 451-498.

Bethe, Hans A., and Adams, Mac C.: A Theory for the Ablation of
Glassy Materlals. Jour. Aero. Sci., vol. 26, no. 8, June 1959,
pp. 321-328; 350.

Cohen, Clarence B., and Reshotko, E1i: Similar Solutions for the
Compressible Laminar Boundary Layer with Heat Transfer and Pressure
Gradient. NACA Rep. 1293, 1956. (Supersedes NACA TN 3325.)

Baron, J. R.: The Binary-Mixture Boundary Layer Associated with Mass
Transfer Cooling at High Speeds. Tech. Rep. 160, Naval Supersonic
Lgb., M.I.T., May 1956.

Fay, J. A., and Riddell, F. R.: Theory of Stagnation Point Heat
Transfer in Dissociated Air. Jour. Aero. Sci., vol. 25, no. 2,
Feb. 1958, pp. 73-86.

LTZ2T~d



27

‘weqsL8 99BUTPIOO) - T 2InJTd

208IISqUT PTNBIT-sBS -

LTeTI-4d

sTX® Apog




E-1217 g

‘Apoq FutyeTge Jo adwug - 'z oanItd

3J ‘X ‘o0BraIns £Lpoq FuoTe soURYSTQ

28

T

0T 6 5

L

9

S

4

1 ‘4 ‘surpex Apog



29

‘UOTABISTIOSP OU JI0J SUOTRTPUOD 20BIISQUL - °*¢ aanFTd
‘UOTHNQTIZSTP L3ToOTaA TBWION (®B)

13 ‘X fo0BIans Apoq JuoTe 90UBISTJ

21 0T 8 9 14 2 o&.ﬁ
Az-1-
\\ Ollﬂl
ge-
| \\ o
7/ v
SSOTUOTSUSWIP
| I's
. * ) .
aTQeTIRA DUWTT, 2
/ )/
2L
6°2
< L, 0
\ -
S ||\VAI|\ 0°T d 150
o 20T 7
‘oWTL _ g

LTST-H ) ,

f50B8II5qUT JO A}3TI00TSA TBWICHN

€00,

SSOTUOTSUSWLP



30

E-1217

"UOERBASTSO8P OU IOJ SUCTFTPUOD 20BIISGUL  *POpNTIUC) - *¢ oINITJ
‘UOTANQTILSTP QUDTPBIB axnyeradma], Apv

1J ‘X ‘somJans Lpoq JuoTs oourqsI|d
aT 0T 8 9 4 2 0]

GO -
201 l/////
/ oT-
T°7 |
/1 ST-
0z
0°T /
YA
AN
w 0g -
——
% 0 /
l mm -
omw ///
‘2 |
‘ouT,
| or-

TUSWIp ¢,1 ‘qusTpetd aanjeiadws) 90BIIS|UT

TS

§83TUO



E-1217

Distance normal to body surface, y, dimensionless
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(a) Dimensionless
time variable,
7.2

Temperature, T, dimensionless

(b) Dimensionless
time variable,
29.

(c) Dimensionless
time varlable,

2.

Figure 4. - Flow-velocity and temperature profiles for no deceleration.
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dimensionless

P4

Normal velocity of interface,
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Time
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Distance along body surface, X, ft
(a) Normal velocity distribution.

Figure 5. - Interface conditions for moderate deceleration
(g = -0.2).
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Interface temperature gradient, T', dimensionless
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(b) Temperature gradient distribution.
Figure 5. - Concluded. Interface conditions for moderate

deceleration (g = -0.2).
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(a) Normal velocity distribution.

Figure 6. - Interface conditions for strong deceleration
(g = —0- 6)-
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Interface temperature gradient, T?, dimensicnless
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Figure 6. - Concluded. Interface conditions for strong

deceleration (g = -0.6).
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